

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : EMI(18EC0413) Course & Branch: B.Tech – ECE

Year & Sem: III B. Tech & I Sem **Regulation:** R18

UNIT -I

1. a) Explain about static characteristics of measuring instrument. [L2][CO1][5M]

b) Define the terms in dynamic characteristics i) Speed of Response

ii) Fidelity iii) Lag. [L2][CO1][5M]

2. a) Explain the construction of multi-range voltmeter & Range extension DC voltmeter.

[L2][CO1][5M]

b) A D'Arsonval movement with a full-scale deflection current of 50 µA and internal resistance Of 500Ω is to be converted into a multirange voltmeter. Define the value of multiplier required For 0-20V, 0-50V, 0-100V. [L6][CO1][5M]

3. a) Explain different types of errors that occur in measurements. [L2][CO1][5M]

b) Explain about Differential type voltmeter.

[L2][CO1][5M]

4. a) How do we determine the performance characteristics (static & dynamic) of an instrument.

[L2][CO1][7M]

b) Explain the process of calibration.

[L2][CO1][3M]

5. a) Define sensitivity. Calculate the sensitivity of a 200 µA meter movement which is to be used As a dc voltmeter. [L4][CO1][4M]

b) Draw and explain solid state DC Voltmeter. [L2][CO1][6M]

6. a) Explain the dynamic response of an instrument. [L2][CO1][5M]

b) Explain about multirange AC voltmeter. [L2][CO1][5M]

7. a) With neat sketch explain thermocouple type RF ammeter. [L2][CO1][5M]

b) Explain the fundamental principle of AC voltmeter. [L2][CO1][5M]

8. a) Describe with the help of circuit diagram the construction and working of a

Multi meter. [L2][CO1][6M]

b) Discuss about basic DC Ammeters. [L2][CO1][4M]

9. Explain how a multi-meter can be used as

i) DC voltmeter & AC volt meter. [L2][CO1][5M] ii) DC ammeter & ohmmeter. [L2][CO1][5M]

10. a) Explain with the help of circuit diagram the construction & working of a series type ohm meter.

[L2][C01][5M]

b) A shunt type ohmmeter uses a 5 mA basis D'Arsonval movement with an internal resistance of 50Ω . The battery voltage is 3V.It is desired to modify the circuits by adding appropriate shunt resistance Across the movement so that the instrument indicates 5Ω at the midpoint scale. Calculate:

i) The value of shunt resistance. ii) Value of current limiting resistance R1. [L6][CO1][5M]

<u>UNIT –I</u>

PERFORMANCE CHARACTERISTICS OF INSTRUMENTS:

1. What is meant by measurement?	[L1][CO1][2M]
2. Define Instrument.	[L1][CO1][2M]
3. What is Resolution?	[L1][CO1][2M]
4. Define – Repeatability	[L1][CO1][2M]
5. What is Relative error?	[L1][CO1][2M]
6. Define threshold	[L1][CO1][2M]
7. Define linearity	[L1][CO1][2M]
8. List the Performance Characteristics of an Instrument	[L1][CO1][2M]
9. Define Accuracy	[L1][CO1][2M]
10. Define Sensitivity	[L1][CO1][2M]
11. Compare accuracy and precision of an instrument	[L1][CO1][2M]
12. What are types of ohm meters and what are they	[L1][CO1][2M]
13. What are the Statistical Analysis of an Instrument?	[L1][CO1][2M]
14. Define Variance	[L1][CO1][2M]
15. Define Standard Deviation	[L1][CO1][2M]
16. What is meant by Arithmetic Mean	[L1][CO1][2M]
17. Define Calibration	[L1][CO1][2M]
18. Define Fidelity of an Instrument	[L1][CO1][2M]
19. Define Error.	[L1][CO1][2M]
20. Explain various errors in instrumentation system	[L1][CO1][2M]

I	. 8	ι) I	I raw	the neat	diagrams o	t horizontal	deflection	n systems	and exp	laın brı	efly at	out their	working

[L2][CO2][6M]

b) State the standard specifications of a sample CRO.

[L2][CO2][4M]

2. a) Discuss about important CRT features.

[L2][CO2][4M]

b) Draw the block diagram of a dual beam oscilloscope & explain its working. [L4][CO2][6M]

3. Draw the block diagram of a general-purpose oscilloscope (CRO) and explain function of each block.

[L4][CO2][10M]

4. a) Explain the major parts of CRT with a block diagram.

[L2][CO2][5M]

b) Explain Two electron beam(dual beam) CRO.

[L3][CO2][5M]

5. a) Draw the block diagram of Delay line circuit and explain its working.

[L2][CO2][5M]

b) With neat sketch explain about vertical amplifier.

[L6][CO2][5M]

6. a) Discuss in detail, the construction and working of a Trigger sweep generator. [L2][CO2][5M]

b) Explain with a diagram how phase can be measured using a Lissajous method.

[L2][CO2][5M]

7. a) Describe in details the construction and working of an digital storage oscilloscope.

[L2][CO2][5M]

b) Construct delayed line sweep circuit, explain the operation.

[L6][CO2][5M] [L2][CO2][5M]

8. a) State the various applications of an oscilloscope. b) Explain the function of trigger circuit.

[L2][CO2][5M]

9. a) Explain with a diagram how frequency can be measured using a Lissajous method.

[L2][CO2][5M]

b) Briefly discuss about dual trace CRO.

[L2][CO2][5M]

10. a) Explain with the block diagram how the digital frequency and time period can be measured using [L2][CO2][5M] counter/meter instrument.

b) What are the different types of CRO probes?

[L1][CO2][5M]

<u>UNIT –II</u>

OSCILLOSCOPES:

1. What is CRO?	[L1][CO2][2M]
2. What are the main parts of CRO?	[L1][CO2][2M]
3. What are the various probes of CRO?	[L1][CO2][2M]
4. List out the main parts of Cathode ray tube.	[L1][CO2][2M]
5. What is function of electron gun?	[L1][CO2][2M]
6. List the types of deflection plate.	[L1][CO2][2M]
7. Define Deflection Sensitivity?	[L1][CO2][2M]
8. What is the use of phosphor in a CRT?	[L1][CO2][2M]
9. What is a digital storage oscilloscope?	[L1][CO2][2M]
10. What is a digital storage oscilloscope?	[L1][CO2][2M]
11. What is the purpose of trigger circuit in CRO?	[L1][CO2][2M]
12. List the standard specifications of CRO.	[L1][CO2][2M]
13. What are the active probes?	[L1][CO2][2M]
14. Why delay line is used in CRO.	[L1][CO2][2M]
15. What is the difference between digital and analog Oscilloscope.	[L1][CO2][2M]
16. Mention the applications of oscilloscopes?	[L1][CO2][2M]
17. Mention the advantages of digital storage oscilloscope?	[L1][CO2][2M]
18. Define Lissajous Method?	[L1][CO2][2M]
19. What are the features of CRT?	[L1][CO2][2M]
20. What is aluminizing?	[L1][CO2][2M]

UNIT –III

1. a) With the help of block diagram explain the functioning of a conventional standard signal generator. II.21[CO31[5M]

	[L2][CO3][SM]
b) Write about fixed AF oscillator and variable AF oscillator.	[L2][CO3][5M]
2. a) Draw the block diagram of a function generator and explain its operation.	[L4][CO3][5M]
b) List the applications of random noise generator.	[L1][CO3][5M]
3. With a neat diagram discuss the operation of a pulse generator.	[L2][CO3][10M]
4. a) Discuss in detail about pulse generator.	[L2][CO3][5M]
b) Explain the method of generate random noise.	[L2][CO3][5M]
5. a) Explain the working of a standard sweep generator with diagram.	[L2][CO3][5M]
b) What is sweep generator? Explain in detail.	[L2][CO3][5M]
6. a) With help of a neat sketch, explain the working of any one of wave analyzer	.[L2][CO3][5M]
b) What is the function of wave analyzer?	[L2][CO3][5M]
7. a) Describe with diagram the operation of a Logic analyzer.	[L2][CO3][5M]
b) List the application of wave analyzers.	[L1][CO3][5M]
8. a) Draw the circuit diagram and explain the working of a spectrum analyzer.	[L2][CO3][5M]
b) What is distortion? What does a distortion analyzer measure?	[L2][CO3][5M]
9. a) What is the function of harmonic distortion analyzer.b) Describe the diagram with operation of a harmonic distortion analyzer using	[L2][CO3][5M] Wein Bridge
And frequency selective type.	[L2][CO3][5M]
10.a) With a neat sketch explain the operation of arbitrary waveform generator.b) What are the different specifications of arbitrary waveform generator?	[L2][CO3][5M] [L2][CO3][5M]

<u>UNIT –III</u>

SIGNAL GENERATORS & ANALYZERS:

1. What is a wave analyzer?	[L1][CO3][2M]
2. What is Harmonic distortion?	[L1][CO3][2M]
3. What do you mean by heterodyne principle?	[L1][CO3][2M]
4. What is the use of wave analyzer?	[L1][CO3][2M]
5. What are the two basic configurations of wave analyzer?	[L1][CO3][2M]
6. What is harmonic distortion?	[L1][CO3][2M]
7. Define Oscillator?	[L1][CO3][2M]
8. List the types of AF Oscillators?	[L1][CO3][2M]
9. What are the variable AF Oscillators?	[L1][CO3][2M]
10. What is Marker generator?	[L1][CO3][2M]
11. What are the features of function generator?	[L1][CO3][2M]
12. What are the advantages of sweep generator?	[L2][CO3][2M]
13. What is distortion?	[L2][CO3][2M]
14. Write the formula for total harmonic distortion?	[L2][CO3][2M]
15. List the types of frequency synthesizers?	[L2][CO3][2M]
16. What is the need of a time base generator?	[L1][CO3][2M]
17. What are the types of logic analyzers?	[L1][CO3][2M]
18. Define Amplitude distortion?	[L1][CO3][2M]
19. Define Cross over distortion?	[L1][CO3][2M]
20. Define Frequency distortion?	[L1][CO3][2M]

UNIT –IV

- 1. a) Discuss the working principle of q-meter &its applications. [L2][CO4][5M] b) Write short note on interference & explain noise reduction techniques. [L2][CO4][5M] 2. Explain any Two ac bridges to measure unknown Inductance. [L2][CO4][10M] 3. a) Describe in detail about EMI &EMC with suitable examples. [L2][CO4][5M] b) Explain the working principle & operation of Capacitance & Inductance bridge circuit.

[L2][CO4][5M]

- 4. Explain the operation of Kelvin Bridge and derive necessary equation. [L2][CO4][10M]
- 5. What is the function of bridge? Draw the Anderson's bridge circuit and derive necessary Equations& explain it. [L2][CO4][10M]
- 6. a) Explain the Schering bridge circuit &its applications.

[L2][CO4][5M]

- b) An A.C bridge as the following constants Arm AB-capacitor of 0.1μF in parallel with 2KΩ resistor, Arm AD-resistance of 5KΩ, Arm BC capacitor of 0.25 μF, Arm CD-unknown capacitor CX and RX in series f-2KHz. Determine the unknown capacitance and dissipation factor. [L6][CO4][5M]
- 7. a) Explain how a Maxwell bridge can be used for measuring an unknown inductance.

[L2][CO4][5M]

b) What is interference & explain noise reduction techniques.

[L2][CO4][5M]

- 8. Describe the operation of the Wheatstone bridge & derive the expression for current when the bridge is unbalanced. [L2][CO4][10M]
- 9. a) Explain how a Maxwell bridge can be used for measuring an unknown inductance.

[L2][CO4][5M]

- b) A Maxwell bridge is used to measure an inductive impedance the bridge constants at balance are C1=0.01 μ F, R1=470K Ω , R2=5.1 K Ω and R3=100 K Ω . Find the series equivalent of the unknown impedance. [L6][CO4][5M]
- 10.a) What are the applications of Wheatstone bridge. And list out its limitations. [L4][CO4][5M]
 - b) Describe the operation of the Wheatstone bridge and derive the expression for DC resistance. [L2][CO4][5M]

<u>UNIT –IV</u>

BRIDGES:

1. List the applications of Q meter?	[L1][CO4][2M]
2. What are the different connections used in Q meter?	[L1][CO4][2M]
3. What is Schering's bridge?	[L1][CO4][2M]
4. What is a bridge circuit?	[L1][CO4][2M]
5. What is Anderson's bridge?	[L1][CO4][2M]
6. List out the advantages of bridge circuits?	[L1][CO4][2M]
7. What is Q meter?	[L1][CO4][2M]
8. What is Maxwell's Inductance – Capacitance Bridge?	[L1][CO4][2M]
9. What are the various methods to eliminate EMI?	[L1][CO4][2M]
10. What are the different EMI Sources in Circuits?	[L1][CO4][2M]
11. What is meant by Q-factor?	[L1][CO4][2M]
12. What are types of DC Bridge?	[L1][CO4][2M]
13. List the types of AC bridges?	[L1][CO4][2M]
14. Define distributed capacitance in Q-meter?	[L1][CO4][2M]
15. Define Dissipation factor?	[L1][CO4][2M]
16. Define Power Factor?	[L1][CO4][2M]
17. Write the Effects of EMI?	[L1][CO4][2M]
18. What is a Bridge?	[L1][CO4][2M]
19. What is Wheatstone balanced bridge?	[L1][CO4][2M]
20. What is Wheatstone unbalanced balanced bridge?	[L1][CO4][2M]

UNIT -V

1. With a neat sketch explain the operation of LVDT. What are the advantages & disadvantages?
[L1][CO5][10M]

- 2. Explain strain gauge for resistance measurement & its applications. [L2][CO5][10M]
- 3. Describe the operation of i) resistive transducers ii) Capacitive transducers
 - iii) Inductive transducers. [L2][CO5][5M]
- 4. a) What are the differences between the active & passive transducers. [L2][CO5][5M]
 - b) Explain the operation of potentiometric transducer. [L2][CO5][5M]
- 5. a) Define a transducer. [L1][CO5][3M]

 - b) Explain about any one of transducer to measure displacement. [L2][CO5][7M]
- 6. a) Draw the diagram of Resistance Thermometer & explain briefly. [L2][CO5][5M]
- b) Explain the operation of thermocouples and thermistors? [L2][CO5][5M]
- 7. Write short notes on thermometer. [L2][CO5][10M] 8. a) With a neat sketch, explain the operation of piezo-electric transducers in detail.
 - [L2][CO5][5M]
- b) Briefly discuss about Velocity transducers. [L2][CO5][5M]
- 9. a) Discuss about Accelerometer. [L2][CO5][5M]
 - b) Explain about vibration. [L2][CO5][5M]
- 10.a) Discuss about Sensors and Transducers. [L1][CO5][5M]
 - b) How to convert linear variable displacement into electrical voltage using transducer.

[L2][CO5][5M]

$\underline{UNIT-V}$

TRANSDUCERS:

1. Define transducer?	[L1][CO5 [2M]
2. What are the passive transducers?	[L1][CO5 [2M]
3. List the Active transducers?	[L1][CO5 [2M]
4. What is primary transducer?	[L1][CO5 [2M]
5. What is secondary transducer?	[L1][CO5 [2M]
6. What is analog transducer?	[L1][CO5 [2M]
7. What is piezo-resistive effect?	[L1][CO5 [2M]
8. What is piezoelectric effect?	[L1][CO5 [2M]
9. What are the different types of strain gauge?	[L1][CO5 [2M]
10. List the applications of strain gauge?	[L1][CO5 [2M]
11. What is LVDT?	[L1][CO5 [2M]
12. List the applications of LVDT?	[L1][CO5 [2M]
13. Define Active Transducer?	[L1][CO5 [2M]
14. Define Passive Transducer?	[L1][CO5 [2M]
15. What is the difference between Active and passive transducers?	[L1][CO5 [2M]
16. What are the advantages of thermocouple?	[L1][CO5 [2M]
17. Define sensor?	[L1][CO5 [2M]
18. Define Thermistor?	[L1][CO5 [2M]
19. Define Thermocouple?	[L1][CO5 [2M]
20. List the applications of Capacitive Transducer?	[L1][CO5 [2M]

Prepared by: J.Jhansi, G.Leena Kumari C.Laxmana Sudheer, K Karunakar